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cium fluoride at the longest wavelength (1.339 A) 
which are given in Table 6. The standard deviations 
of these intensities calculated from counting statistics 
are 0.1% and their true accuracy is estimated to be 
about 0.25 %. In spite of this high accuracy of measure- 
ment, which was confirmed by the reproducibility, 
large differences were observed between the intensities 
of equivalent reflexions, that between 044 and 04-4 
being as much as 8.6 %. Further measurements rejected 
non-uniformity of the beam as a possible cause and 
similar measurements on the strontium fluoride crystal 
gave excellent agreement between equivalents. These 
observations are therefore attributed to anisotropy in 
the extinction for the calcium fluoride crystal. How- 
ever, since these differences occur between 180 ° re- 
lated reftexions they must arise from variation in the 
perfection within the crystal and not from anisotropy 
of  the domain shape. In order to overcome this effect 
one must therefore average the intensity over a suitable 
set of  equivalent reflexions, as was done in the present 
analysis, and consider mean values for the domain 
radius and the mosaic spread parameter. 

Table 6. Neutron diffraction data for 4N re flexions 
from calcium fluoride at 2 = 1.339 A 

h k I Intensity ( I - I ) / I  
0 2 2 251,964 +2.6% 
0 ~ 2 239,378 -2.6% 

4 0 0 202,006 -1.0% 
2[ 0 0 206,155 + 1 "0% 

4 2 2 184,138 0 
2[ 2 2 190,903 +3"7% 
4 ~ ~ 179,637 -2"4% 
2[ ~ ~ 181,636 -1"3% 

Table 6 (cont.) 

h k l Intensity ( I - l ) / l  
0 4 4 199,922 +4"3% 
0 2[ 2[ 183,570 -4-3% 

4 4 4 239,224 0 
2[ 4 4 245,883 +2"8% 
4 2[ 2[ 232,935 -2.6% 
2[ 2[ 2[ 238,470 -0"3% 

Finally, we should like to emphasize that although 
we have obtained good agreement between the theory 
and experiment it is likely that some further improve- 
ment could be made in the exact form of the closed- 
form expressions used. It is therefore desirable that 
further experimental tests of this theory be carried out. 
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Absolute Measurement of Strueture Faetors Using a New Dynamical 
Interferenee Effeet 

BY M. HART AND A. D. MILNE 
H. H. Wills Physics Laboratory, University o f  Bristol, England 

(Received 1 August 1969) 

A new method of determining X-ray scattering factors by dynamical interference is described. The 
theoretical background to the interference effect is discussed in detail and an expression for relating 
the fringe period to the structure factor is developed. The method relies on anomalous transmission 
and is therefore most suitable for measurements on nearly perfect crystals of high atomic weight. 
It also has the attractive property of being insensitive to slowly varying lattice strains. Applying the 
method to the 220 reflexion of silicon a value of 8"487+0"017 for the atomic scattering factor has 
been obtained using Mo K~I radiation. This value is in excellent agreement with the author's previous 
results using the Pendell6sung method. 

1. Introduction terminations with a view to comparing the results with 
the values predicted by the different theoretical scat- 

In recent years several attempts have been made to tering models. With adequately precise measurements 
improve the accuracy of absolute structure factor de- the reduction of X-ray structure factors to atomic scat- 
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tering factors yields too a wealth of additional infor- 
mation about the distribution of electrons in crystals 
as Dawson (1967a, b) has described. 

Techniques which have been used fall into two cat- 
egories: those which measure the diffracted intensity 
from powdered or single-crystal specimens and those 
which invoke dynamical interference phenomena. Al- 
though the former can be used with all materials, the 
accuracy of the derived structure factors is limited to 
between 1% and ½% (even in the most favourable 
cases) by the various empirical correction factors which 
must be applied (Miyake, 1969). Dynamical interfer- 
ence effects, on the other hand, are in principle capable 
of higher precision, mainly because the dynamical 
theory applies to a precisely defined physical state of 
the crystal whilst it is perhaps trite to remark the 
'ideal powder' or the 'ideal mosaic crystal' are essen- 
tially defined theoretically in ways which do not make 
it clear how such artifacts can be prepared or indeed 
recognized from the structural point of view. 

Until now only the Pendell/Ssung interference effect 
has been used and several Bragg reflexions of silicon, 
germanium and quartz have been investigated. The 
relationship between structure factor and the period 
or order of PendelltSsung fringes has been thoroughly 
investigated theoretically by Kato (1960, 1961a, b, 
1968a, b) so that exact corrections can be made where 
necessary. In the most recent experiment (Hart & 
Milne, 1969) we have shown that by careful optimiza- 
tion of the variable parameters and by the strict elimi- 
nation of correction factors, statistical errors of less 
than 0.1% can be achieved in Pendell6sung experi- 
ments using two radiations and three different spee- 

imens. The method, however, lays very stringent con- 
ditions on the behaviour of the X-ray wavefields inside 
the crystal and this restricts its use to single crystals 
of almost perfect material. 

Another interference effect, produced by a non-dif- 
fracting zone in a crystal, has also been examined in 
detail (Milne, 1966; Authier, Milne & Sauvage, 1968) 
and is here developed as a second dynamical inter- 
ference method of structure factor measurement. It is 
in principle quite different from the Pendell/Ssung 
method since only one branch of the dispersion sur- 
face is active whereas, in the Pendell/3sung method, 
interference is observed between waves from two sep- 
arate branches of the dispersion surface. At this stage 
it is important that these two different methods exist, 
for correlation between results is strong evidence of 
there being no significant systematic errors. 

The problem of systematic errors is of course no less 
serious in structure factor determinations than in any 
other measurements. In particular, the Pendell6sung 
method is susceptible to systematic errors if the crystal 
is distorted either by grown-in defects or by elastic 
strain. It seems likely that the discrepancies between 
previously published results using that method are due, 
at least in part, to undetected lattice distortion. In this 
connexion we stress again that, before serious work 
is started, adequately sensitive diffraction topography 
of the crystal must be carried out. If the strain distri- 
bution is sufficiently simple it may be possible to chose 
diffraction conditions such that the strain is harmless 
(Hart & Milne, 1969). In our experience no crystals 
which we have examined are sufficiently perfect that 
their internal strains can be ignored in Pendell/Ssung 
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Fig. I. Geometrical quantities in real space (left) and reciprocal space (right) used in the calculation of the interference patterns 
of a crystal containing a gap. 
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measurements of structure factors. An important fea- 
ture of the present method is that it is insensitive to 
strains which have only slow spatial variations. 

In this paper a measurement of the 220 structure 
factor of silicon using interference fringes formed in a 
crystal containing a non-diffracting zone will be de- 
scribed. 

2. Theory 

In general the diffraction contrast produced by a thin 
non-diffracting lamella in an otherwise perfect crystal 
can be explained by considering the interference of the 
eight plane-wave components of the incident, linearly 
polarized, spherical wave which pass through each 
point on the exit surface of the crystal (Authier, Milne 
& Sauvage, 1968). In sufficiently thick crystals how- 
ever, where one of the wavefields is highly attenuated 
by the Borrmann effect (Borrmann, 1941, 1950), the 
situation is considerably simplified and only two plane 
wave components need be considered for each polar- 
ization state. For transmission in the symmetric case, 
which will be considered exclusively, two such waves 
which intersect the exit surface at q (Fig. 1) having 
travelled along paths a and b, can be described by 

Da = D( ti + tz)-l/zf1(AO) exp [ -  i(q)0- ~z/2)] 

Db= D(h +t2)-'/2fz(dO) exp [-i(~oh- zr/2)] (1) 

where D is a constant related to the incident wave, 
ti and t2 are the thicknesses of the diffracting regions 
on either side of the lamella, and fl(AO) and fz(dO) 
describe the variation of amplitude with the angle of 
incidence. 

The phase terms ~00 and ~0h are given by 

where 

~00= Ao (h +tz) ( 1 - P  

~0h= Ao (q +t2) (1 - p ~ ) l / 2  (2) 

,~ cos 0 
A0= C(ZnZr,)I/2 (3) 

and P~ and Pp are deviation parameters defined in 
terms of the angles c¢ and fl by 

P, = tan c¢ / tan 0 ] 
Pp= tan fl / tan 0 J". (4) 

2'h and 2'~ are the hkl and hfc[ coefficients in the Fourier 
expansion of the dielectric susceptibility X. To an ac- 
curacy of 0.1% for low order Bragg reflexions in 
silicon they are related to the structure factor Fn by 
the relationship 

re~'2 ]Fh] (5) 
(XhX~)l/2 = n V 

where re is the classical electron radius, V is the volume 
of the unit cell, 2 is the X-ray wavelength and 0 is the 

Bragg angle. The polarization factor C, takes the 
values 1 in the rr case when the electric vector of the 
incident wave is at right angles to the plane defined 
by the wave vectors for the incident and diffracted 
beams and Icos 201 for the n case when the electric 
vector is normal to that plane. 

If the thickness to of the non-diffracting zone is 
much less than the total crystal thickness (h +t2), the 
two paths a and b are nearly parallel inside the crystal 
and the phase difference 6ao at q between the two 
interfering waves is given by 

dab= Re (fp0- ~0h) • (6) 

This phase difference can be expressed in terms of an 
average value P of the deviation parameter. To an 
accuracy of 0.1% we can write 

where 

27r 

A0 
to .P(1 - pz)-a/2 = 2nn0, (7) 

P=½(P~+PB)=tan A / tan 0 (8) 

and no is called the order of interference. 
Hence, if the crystal and lamella thicknesses are 

known, the structure factor can be obtained directly 
by measuring the interference order as a function of 
position on the exit surface of the crystal. 

Polarization 
With an unpolarized source of X-rays the observed 

interference pattern is complicated owing to the super- 
position of the patterns produced by the two polariza- 
tion components of the incident wave. As the intensity 
and period of the fringe patterns are different for the 
two states of polarization it is not possible to describe 
the observed pattern with sufficient accuracy in terms 
of an average polarization factor. However, a good 
approximation to the position of the experimentally 
obtained fringes can be calculated theoretically. If we 
write the diffracted intensity Ih to show explicitly the 
two components we have 

IhocA cos z ~bo- tg P(1--Pz) -1/2 

+ B cos 2 ~ - Icos  201 tg P(1 -/~2)-1/2 (9) 

where Ag denotes the value of A0 corresponding to 
the cr case of polarization, obtained by substituting 
C =  1 in equation 3. The factors A and B allow for the 
difference in attenuation and scattering of the two 
polarization components and are given by 

A =exp ( - / to t )  and B=lcos 201 exp (-/t '~t) (10) 

where t= t l  +t2 is the thickness of the crystal and/z o 
and/t  '~ are absorption coefficients approximately given 
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by 
c ° s A [  Zih ] 

/z~=/Zo c ~  1 . . . .  (1 - Pz)i/2 
Zto 

cosA [ Zih ] 
~-=/~0co- -~  1 - ] c o s 2 0 [ - - ( l - / s z )  ~/z . (11) 

Z~o 

P0 is the normal linear absorption coefficient, A is 
defined by equation (7) and yi0 and X~h are the imagi- 
nary parts of Z0 and Zh respectively. 

The attenuation coefficients given in equation (11) 
are not related to actual trajectories of the interfering 
waves. Although the phase difference can be expressed 
in terms of an average deviation parameter P, the at- 
tenuation of the interfering waves is not simply related 
to /5  but to the specific values of P= and P~. Towards 
the edge of the patterns, at large deviations from the 
exact Bragg angle, the introduction of/5 instead of P= 
and P~ is quite justified but close to the centre of 
reflexion where the two tie points ~ and fl lie on op- 
posite sides of the Brillouin zone boundary our attenua- 
tion coefficients are systematically too large. 

Because we have chosen to use quite thick anom- 
alously transmitting crystals [~0(ti + tz) ~- 10] the polar- 
ization ratio A/B is large near the centre of the reflect- 
ing range so that there the observed pattern is nearly 
a pure o" case pattern and the correction due to the 
second term in equation (9) is small. As we mentioned 
before, towards the edge of the observed fringe pat- 
terns where the polarization ratio approaches Icos 201 
the mean Poynting vector approximation (equation 11) 
is a good one. Because the observed pattern is pre- 
dominantly formed with or-polarized radiation it is 
experimentally convenient to compare equation (9) 
with the test function I defined in equation (12) 

I~°cA c°s2 Ag tg P(1-/52)-~/2 . (12) 

The extrema of the test function I ~ occur for integral 
values m of the argument. It is straightforward to 
show that the corresponding extrema of the observed 
pattern Ih are shifted by an amount 5m where 

I" c o s A  
s i n  (2zc•m) = cos2 20 exp [-- /tot ( l -- [cos 201) 

cos 0 

x (1 -/52)1/2 Zih ] 
Z~O 

xsin -~-  tg Icos 201/5(1-p2)-1/2 . (13) 

Because only a few fringes are visible we cannot 
chose to make &m zero so that the shift of each fringe 
has to be calculated from equation (13). 

Crystal perfection 
We have so far assumed that the crystal is ideally 

perfect. Of course we can ensure that only crystals 
which are free of planar defects and dislocations are 
used but cannot, in silicon which is commercially avail- 

able, avoid point to point variations in lattice param- 
eter. Sensitivity to strain occurs at two levels in these 
experiments: X-ray energy flow may be modified by 
the strain in each crystal wafer or, more sensitively, 
moir6 effects between the two parts of the crystal may 
become troublesome. 

In weakly strained crystals the tie-points which char- 
acterize waves in the crystal migrate along the dis- 
persion surface so that the wavefield accommodates it- 
self to the local lattice (Penning & Polder, 1961; Kato, 
1964; Bonse, 1964; Hart & Milne, to be published). 
If the strain field is homogeneous then all tie-points 
move so that the change in the component of wave 
vector parallel to the local diffraction vector, AKx, is a 
constant and 

where 

AKz = P 
2do tan 0 (14) 

2 tan 0 A0 [ ^ t~ 2 U - t~ 2 U ] 
P= 2 cos 0 c°s2 sin2 5) o- S j. (1 

L.  

U(x, z) is the atomic displacement function for the im- 
perfect crystal. 

Even in the best crystals available this tie-point 
migration can be an important source of systematic 
error in Pendell6sung experiments (Hart & Milne, 
1969). However, in the present experiments, weak de- 
formations (for which O2U/~x2 and ~2U/Oz2 are con- 
stant over the volume of crystal contributing to the 
diffracted beam) have little influence on the observed 
fringe spacing. If we expand equation (7) to first order 
in /5 the fringe spacing A is constant and given by 

A =Ao(tl q-t2) tan O/tg. (16) 

STEP 4 

STEP 3 

STEP 2 

STEP 1 

"7 
I 

~= -!l 

[112] 

[111] 

'NC'i%M 

Fig. 2. Orientation and design of the stepped crystal. 
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Straightforwardly one can show that A = [dK[ -1 (Fig. 1) 
where dK is the separation of the tie points measured 
in the direction paralIel to the diffraction vector. In a 
homogeneous strainfield AKx is the same for all waves 
so that dK, and hence A, is not changed by weak 
deformations of the crystal. 

Because these fringes are spherical wave moir6 frin- 
ges their phase is affected by translations of one part 
of the bicrystal with respect to the other. This is simply 
a change in the phase of the lattice in the second part 
of the crystal with respect to the waves in the gap. 
The phase change is 2rch. f where f is the translation 
vector of the two crystal lattices. Referring our equa- 
tions to an origin in the first crystal changes equation 
(7) to 

to /5(1 - p 2 ) - 1 1 2  (17) no+e=no+h, f =  A0 

so that the centre of the observed pattern need not be 
an interference maximum. 

3. Experimental considerations 

According to equation (17) the fringe position is very 
sensitive to relative shifts between the two diffracting 
elements: h .  f=0.1 when I f [=  10 -9 cm if [hi - l =  10 -8 
cm. To achieve the necessary stability we have made 
measurements on a block of silicon containing an ap- 

(a) 

e 

Ih 

0 
Fig.4. Comparison between (a) the theoretical fringe pattern 

calculated from equation (9) and (b) a microdensitometer 
trace of step 2 of Fig. 3(a) obtained with Mo K~I radiation. 

propriate narrow groove rather than on pairs of crys- 
tals separated by a narrow gap. 

As in our Pendell6sung experiments we have made 
measurements on Lopex silicon grown in the [111] 
direction by Texas Instruments. Although the present 
fringe systems are insensitive to strain we have chosen 
to measure the 220 Bragg reflexion so that the intrinsic 
crystal strains are harmless [p--0 in equation (14)]. So 
that the fringe system could be studied easily over a 
wide range of the adjustable parameters a stepped 
sample was prepared (Fig. 2). The crystal orientation 
was determined to better than 1 min of arc and the 
specimen cut with a high speed diamond-edged slitting 
saw. The X-ray entrance surface, gap, and stepped sur- 
face were all cut without removing the crystal from its 
mount so that all of these surfaces were precisely 
parallel to one another and within 1 rain of arc of the 
(T11) plane. Surface damage introduced during crystal 
cutting was afterwards removed by chemical polishing. 

Specimen dimensions 
Experimentally the fringe spacing 3 and the speci- 

men dimensions [tl +t2] and tg are the only quantities 
measured [see equations (3), (4), (5), (7), (8), or, more 
simply equation (16)]. There are no ideal specimen 
dimensions but the optimum size is dictated by a num- 
ber of considerations. 

The specimen surfaces are not smooth to better than 
1-2/~m so that the gap must be of order 500/~m if we 
are to measure its width to 0.2 %. On the other hand 
the gap must not be so wide that the coherent wave- 
fields can become spatiaIIy separated in the second 
part of the crystal. 

The crystal thickness must be so large that the con- 
tribution of the strongly absorbed wavefields is negli- 
gible. At the centre of the range of Bragg reflexion 
for the a case of polarization in the 220 Bragg reflexion 
of Mo K~ radiation from silicon, this contribution is 
1% of the intensity at a crystal thickness of 3.5 ram. 
The situation is much less favourable for Ag K~I radia- 
tion and for other angles of incidence. In practice we 
were limited to a total specimen thickness [tl+t2] of 
about 8 mm by intensity considerations. This, too, 
determined the collimator slit width which was ap- 
proximately 10 pm. 

4. Experimental method 

The specimen was mounted on a slide unit with the 
well collimated ribbon beam of X-rays incident at the 
Bragg angle for the 220 Bragg reflexion. Interference 
topographs were recorded on nuclear emulsion plates 
(Ilford type L4 - 50/~m) using Mo K~ and Ag K0q 
radiations at three positions 0.5 mm apart in the speci- 
men. A typical pair of interference patterns obtained 
from the stepped crystal sketched in Fig. 2 is shown 
in Fig. 3. In Fig. 4 a direct qualitative comparison is 
made between the theoretical fringe profile calculated 
from equation (9) and a densitometer trace of one of 
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Step 4 

Step 3 

Step 2 

Step 1 

(a) (b) 

Fig.3. Interference fringe patterns obtained from the sample sketched in Fig.2 using (a) Mo K~q and (b) Ag K0q radiation. 

[ To face p. 227 
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the steps in Fig. 3(a). Evidently the theoretical ap- 
proximation used to derive equation (9) is satisfactory 
over the range of  P involved in these experiments. 

When the X-ray experiments were completed the 
specimen was cut parallel to the Bragg planes at the 
positions where interference patterns had been ob- 
tained. The thicknesses of  the specimen and gap were 
then measured directly with a travelling microscope. 

5. Results 

Fortunately it is not necessary to obtain values of the 
structure factor by computing a theoretical fringe pat- 
tern and comparing that with a microdensitometer 
trace of  an experimental pattern. An exact version of  
equation (9) can of course be straightforwardly derived 
but curve fitting would involve at least three adjustable 
parameters Fn, Zth/;(io and e. Using the facts that 
_P<0-5 and that the observed pattern is almost a-po- 
larized we have instead used a linear graphical method 
to derive a value of  Fn from the observed patterns. In 
the absence of  interference fringes In is symmetric in 
the deviation parameter  P. We can therefore locate 
the position in the interference pattern where _P=0 
because it is the line of symmetry of the envelope of 
the fringe intensity pattern. Since, in a typical case 
ta/Ao ~_ 10 and the origin of P could be determined to 
about  0-1 fringes, the absolute error in P was 0.01. 
Thus, even w i th /~=0 .5  the error in (1 _pz)-l/2 is only 
jus t  over 0.1%. If  we calculate P(1 _p2)-1/2 for every 

d /~2)-1/z1 fringe, the gradient G =  dn0 [ P ( 1 -  can sti!l 

be evaluated to within 0.1%. At the same time a cor- 
rection for the fringe shift 6m caused by the zc-polarized 
waves can be made. An example of  the calculation for 
one step on a Mo Kel fringe pattern is shown in 

Table 1. F rom these results the gradient G was calcu- 
lated by the method of least squares. 

Since 

and 

G=Ag/tg (7) 

ff=X/(tl +tz) tan O, (8) 

where x is the distance measured along the exit surface 
of the crystal (Fig. 1), values of Ag can be straight- 
forwardly calculated. A complete set of  results is col- 
lected in Table 2. 

Table 1. Sample calculations for step 2 at position A 
on the Mo K~I pattern of Fig. 3 

Order P P(1 _p2)-1/2 6m 
m 
5 0.350 0.371 0-065 
4 0"287 0"301 0"068 
3 0"221 0"227 0"061 
2 0"148 0"150 0-039 
1 0"074 0"074 0"011 
0 -0"002 -0"002 0"000 

- 1 -0"075 -0"075 -0"011 
- 2  -0"150 -0"152 -0"039 
- 3 -0.221 -0.227 -0"061 
- 4  -0"287 -0-300 -0"068 
- 5 -0"349 -0"373 -0"065 

There are no obvious systematic trends in the table 
of results and the mean values are 

Ag = 36.44 p m  + 0.07 p m  for Mo Kex 

Ag = 46.48 p m  + 0.07 p m  for Ag K~I . 

Using equations (3) and (5) we find: 

f = 8 - 4 8 7 + 0 . 0 1 7  for Mo K~I 

f =  8.494 + 0.013 for Ag K~1 . 

(18a) 
(18b) 

Position A 
Step 1 
Step 2 
Step 3 
Step 4 

Position B 
Step 1 
Step 2 
Step 3 
Step 4 

Position C 
Step 1 
Step 2 
Step 3 
Step 4 

Table 2. Complete set of results 
(tl + t2) measured in mm, tg and A0 a are measured in/zm. 

Mo K~I 
(tl + t2) tg G A0 o" 
7.974 487 0"07460 36"33 
7"652 492 0.07388 36.35 
7"311 492 0"07362 36"22 
6"960 492 0.07356 36.19 

Mean A0~r 36"27 ± 0"04 

7.977 494 0.07427 36.69 
7.653 496 0.07407 36.74 
7.306 497 0"07348 36.52 
6.956 498 0.07438 37.04 

Mean A0 a 36.75 ± 0.10 

7"972 489 0"07392 36"15 
7"651 493 0"07363 36"30 
7"308 494 0"07348 36"30 
6"957 494 0"07387 36"49 

Mean A0 a 36.31 ± 0.06 

Ag K~I 
G A0 ~ 

0"09489 46"21 
0"09486 46-67 
0"09366 46"08 
0"09476 46.62 

46"40±0"13 

0-09496 46"91 
0"09419 46-72 
0"09352 46"48 
0"09450 47"06 

46"71 ± 0"11 

0"09481 46"36 
0"09422 46"45 
0"09370 46"29 
0"09443 46"65 

46"44± 0"07 
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These results are experimental values at 20°C with 
no corrections for thermal motion or anomalous dis- 
persion and should be compared with our previous 
results which were obtained by the PendellSsung 
method. They are 

f =  8"478 +_ 0"008 for Mo K~I (19a) 

f=8.448 +0-012 for Ag Kcq. (19b) 

Remembering that the gap crystal was designed for 
Mo Kcq radiation and not specifically for Ag Kcq the 
above agreement is very encouraging. 

6. Discussion 

The primary source of random error lies in the deter- 
mination of the gap width. Because the crystal surfaces 
must all be chemically polished to remove handling 
strains and surface damage, we were not able to deter- 
mine tg to better than 0.2 % and this error is propa- 
gated, almost without change, into the final scattering 
factors. 

Although we were able to ensure that residual crys- 
tal strains had no influence on wavefield propagation 
some moir6 fringe shifts were observed. The order shift 
e varied from step to step and from one position to the 
next, but was effectively eliminated by the graphical 
method outlined in § 5. This approach is justified by 
the internal consistency of the results in Table 2. 
Potentially the most awkward feature of the experiment 
is the problem of X-ray polarization. The ad hoc ap- 
proach adopted here has the great advantage of sim- 
plicity. It is important to notice, that because the po- 
larization ratio A/B is large in these anomalous trans- 
mission experiments, the fringe shifts due to re-polar- 
ized waves are small (Table 1) causing approximately 
a 2 % change in G. In the least-squares line fitting used 
to determine G the outer fringes have greatest weight 
and those are the fringes for which the approximate 
treatment of polarization [equations (10) and (11)] 
should be most reliable. 

Finally, we would comment on a misunderstanding 
which arose in the discussion at the Cambridge meet- 
ing (Hart & Milne, 1969) concerning the systematic 
difference between the silicon scattering factors meas- 
ured with Mo K~I and Ag KtXl radiations (19a, b) 
using the PendellSsung fringe method. As Dr B. Daw- 
son has since pointed out to us, the observed difference 
is exactly that predicted by theories of anomalous dis- 
persion. For example, using HSnl's (1933a, b) equa- 
tions one calculates Af'  (Mo g o b ) - A f '  (Ag K~I)= 

0.035 for the K electrons of silicon whereas we meas- 
ured f (Mo Koq)/f(Ag K0q) = 1.0035 + 0.0007 or f (Mo 
Ke~) - f ( A g  Kel) = 0"030 + 0"006. Bearing in mind that 
the present experiments were performed under optimum 
conditions only for Mo K0q radiation, we consider that 
the present Ag Kel measurement (18b) is subject to 
systematic error and that the other results are mutually 
consistent. This opinion is supported too by the pat- 
terns obtained in Fig. 3(b). Not only are there important 
intensity contributions from the strongly absorbed 
wavefields but also margin enhancement (Kato, 1960) 
can be clearly seen in the Ag K~I patterns. It is there- 
fore not too surprising that the results deduced from 
the Ag Ke1 patterns are systematically different from 
those derived from the Mo Kea patterns. Nevertheless, 
the total spread in all of our results to date, obtained 
by two independent methods, is still only + ¼ %. 

Although, for weakly absorbing crystals, this new 
method is generally inferior to the PendellSsung 
method, there are several situations in which it as- 
sumes some importance. It provides independent sup- 
port for the structure factors which we have measured 
previously by the Pendell6sung technique. There are 
no other interference methods which can be very ac- 
curately applied to strongly absorbing crystals like 
germanium, for which the present method is ideally 
suited. 

This work was supported in part by the Science 
Research Council. 
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